Stoichiometry

"Stoichiometry is the science of measuring the quantitative proportions or mass ratios in which chemical elements stand to one another." Jeremias Benjamin Richter, 1792

Richter introduced the word stoichiometry (Greek, stoicheion - element and metron - measure)

Relative Atomic Mass

Mass Spectrometry
Atoms and the Mole
Composition of Compounds
Determining the Formulas of Compounds
CHEMICAL EQUATIONS
Balancing
Stoichiometry Calculations
Yields

\% Composition => by mass

EX 8. Find the percent composition of sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4} ;[\mathrm{H}=1.0079, \mathrm{~S}=$ 32.065, $\mathrm{O}=15.999$]
$M_{\mathrm{H}_{2} \mathrm{SO}_{4}}=2(1.0079)+32.065+4(15.999)=98.0768$
H: 2(1.0079)/98.0768 $\times 100=2.055328069$
S: 32.065/98.0768 $\times 100=32.69376652$
O: $4(15.999) / 98.0768 \times 100=65.25090541$

Formula from Mass Data

EX 9. Find the empirical formula of an iron oxide if 1.596 g of the oxide contains 1.116 g of iron. [$\mathrm{Fe}=55.845, \mathrm{O}=15.999$]

> find moles then ratio

$$
\begin{array}{ll}
\text { Fe: } 1.116 / 55.845 & =0.01998388 \\
\text { O: }(1.596-1.116) / 15.999 & =0.03000187
\end{array}
$$

$\mathrm{O} / \mathrm{Fe}=0.03000187 / 0.019998388=1.5013 \times 2 / 2=3.002 / 2$

$$
=30 / 2 \mathrm{Fe} \Rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

Formula from \% Composition

EX 10. A compound of sulfur and fluorine contains $25.2 \% \mathrm{~S}$. $[\mathrm{S}=32.065, \mathrm{~F}$ = 18.998]
a) What is its empirical formula? find moles then ratio, assume a mass

S: 25.2/32.065 $=0.78590$
F: $(100-25.2) / 18.998=3.93725$ difference
$S: F=0.78590 / 3.93725=>1 / 5.01=>\mathrm{SF}_{5}$
b) If 0.0450 moles has a mass of 11.4 g what is its molecular formula?

$$
M_{\mathrm{SF}_{5}}=32.065+5(18.998)=127.05 \text { (empirical formula mass) }
$$

$M=>\mathrm{g} / \mathrm{mol}=11.4 / 0.0450=253.3 \mathrm{~g} / \mathrm{mol}$ (molecular formula mass) ratio: $253.3 / 127.055=1.993=>S_{2} F_{10}$

Formula from Chemical Analysis (Combustion)

EX 11. Compound contains only C, H, N, O. Burning 1.261 g in excess O_{2} produced 2.286 g CO_{2} and 0.5805 g water vapor. $0.364 \mathrm{~g} \mathrm{~N}_{2}$ gas also collected. What is its empirical formula? $\left[\mathrm{C}=12.011, \mathrm{H}=1.0079, \mathrm{~N}=14.0067, \mathrm{O}=15.999 ; M_{\mathrm{CO}_{2}}=44.009 ; M_{\mathrm{H}_{2} \mathrm{O}}=18.0148\right.$] $\{\mathrm{C}, \mathrm{H}, \mathrm{O}, \mathrm{N}\}-\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}$
$\mathrm{CO}_{2}:\left(2.286 \mathrm{~g} \mathrm{CO}_{2} / 44.009 \mathrm{~g} / \mathrm{mol}\right)\left(1 \mathrm{~mol} \mathrm{C} / 1 \mathrm{~mol} \mathrm{CO}_{2}\right)=0.05194 \mathrm{~mol} \mathrm{C} \quad 0.062389 \mathrm{~g} \mathrm{C}$
$\mathrm{H}_{2} \mathrm{O}:(0.5805 / 18.0148)\left(2 \mathrm{~mol} \mathrm{H} / 1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}\right) \quad=0.0644 \mathrm{~mol} \mathrm{H} \quad 0.06495 \mathrm{~g} \mathrm{H}$
N_{2} : (0.364 / 14.007)
$=0.02598 \mathrm{~mol} \mathrm{~N}$
O: $1.261-(0.62389+0.06495+0.364)=0.013 \mathrm{~mol} \mathrm{O} \quad 0.2081 \mathrm{~g} \mathrm{O}$

C:H:N:O = $0.0519: 0.0644: 0.0259: 0.013$

$$
3.99: 4.96: 2.00: 1.00 \Rightarrow \mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}
$$

Conservation of Mass => Balance Equations

by inspection

$$
\underline{3-\mathrm{NaBr}}+\underline{1} \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \underline{3 \mathrm{HBr}+\underline{1} \mathrm{Na}_{3} \mathrm{PO}_{4}{ }^{3} \mathrm{HB}}
$$

most complicated first

$$
\begin{aligned}
& \begin{array}{l}
4 \\
1
\end{array} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{9} \rightarrow \underset{5}{\rightarrow} \frac{12}{3} \mathrm{CO}_{2}+\frac{6}{3 / 2} \mathrm{~N}_{2}+\frac{5 / 2}{5 / 2} \mathrm{H}_{2} \mathrm{O}+\frac{1}{-} \mathrm{O}_{2} \\
& \text { balance O: } 9=6+5 / 2+2 x ; 2 x=(18-12-5) / 2=1 / 2=>x=1 / 4
\end{aligned}
$$

algebraic method

$$
\underline{\mathbf{a}} \mathrm{HNO}_{2}+\underline{\mathbf{b}} \mathrm{HI} \rightarrow \underline{\mathbf{c}} \mathrm{NO}+\underline{\mathbf{d} \mathrm{I}_{2}}+\underline{\mathbf{e} \mathrm{H}_{2} \mathrm{O}}
$$

Conservation of Mass => Balance Equations

algebraic method

unique atoms: N a
I $\quad=>b=2 d$
=> $\mathrm{c}=\mathrm{a}$
$d \quad[(5$ unknowns $\rightarrow 3)$
balancing atoms :

	$d=2 e$
N :	$\mathrm{a}=\mathrm{a}$
O:	$2 \mathrm{a}=\mathrm{a}+$
I:	$2 \mathrm{~d}=2 \mathrm{~d}$

so $a=2 d=e ;$ let $d=1$ then $a=2$
a chemical equation requiring complicated algebraic
$d=1$
manipulations is best solved by matrix methods
$e=2$

Stoichiometry - Mass Relationship between Reactants and Products

$$
2 \mathrm{C}_{5} \mathrm{H}_{10}(I)+15 \mathrm{O}_{2}(g) \rightarrow 10 \mathrm{CO}_{2}(g)+10 \mathrm{H}_{2} \mathrm{O}(I)
$$

LOTS OF INFORMATION

$$
\begin{array}{rl}
2 \mathrm{C}_{5} \mathrm{H}_{10} \text { molecules }+15 \mathrm{O}_{2} \text { molecules } & \rightarrow 10 \mathrm{CO}_{2} \text { molecules }+10 \mathrm{H}_{2} \mathrm{O} \text { molecules } \\
4 \mathrm{C}_{5} \mathrm{H}_{10} \text { molecules }+30 \mathrm{O}_{2} \text { molecules } & \rightarrow 20 \mathrm{CO}_{2} \text { molecules }+20 \mathrm{H}_{2} \mathrm{O} \text { molecules } \\
2 \mathrm{~N}_{\mathrm{o}} \mathrm{C}_{5} \mathrm{H}_{10} \text { molecules }+15 \mathrm{~N}_{\mathrm{o}} \mathrm{O}_{2} \text { molecules } & \rightarrow 10 \mathrm{~N}_{\mathrm{o}} \mathrm{CO}_{2} \text { molecules }+10 \mathrm{~N}_{\mathrm{o}} \mathrm{H}_{2} \mathrm{O} \text { molecules } \\
2 \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{10}+15 \mathrm{~mol} \mathrm{O}_{2} & \rightarrow 10 \mathrm{~mol} \mathrm{CO}_{2}+10 \mathrm{~mol} \mathrm{H} \\
2 & \mathrm{O} \\
140.268 \mathrm{~g} \mathrm{C}_{5} \mathrm{H}_{10}+479.97 \mathrm{~g} \mathrm{O}_{2} & \rightarrow 440.09 \mathrm{~g} \mathrm{CO}_{2}+180.148 \mathrm{~g} \mathrm{H} \mathrm{H}_{2} \mathrm{O} \\
\mathbf{6 2 0 . 2 4} \mathbf{g} & \rightarrow \mathbf{6 2 0 . 2 4} \mathbf{g}
\end{array}
$$

Solving Stoichiometry Problems $2 \mathrm{C}_{5} \mathrm{H}_{10}(\eta)+15 \mathrm{O}_{2}(g) \rightarrow 10 \mathrm{CO}_{2}(g)+10 \mathrm{H}_{2} \mathrm{O}(\eta)$

EX 12. For the reaction $\quad[H=1.0079, \mathrm{C}=12.011=>M=70.134]$
a) How many g of oxygen needed to completely oxidize 37.00 g of $\mathrm{C}_{5} \mathrm{H}_{10} ? \quad \mathrm{~g} \mathrm{C}_{5} \mathrm{H}_{10}->\mathrm{g} \mathrm{O}_{2}$ $(37.00 \mathrm{~g} / 70.134 \mathrm{~g} / \mathrm{mol})\left(15 \mathrm{~mol} \mathrm{O}_{2} / 2 \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{10}\right)\left(2 \times 15.000 \mathrm{~g} \mathrm{O}_{2} / \mathrm{mol} \mathrm{O}_{2}\right)=126.6 \mathrm{~g}$ minimum amount
b) How many grams of carbon dioxide are formed?
$(37.00 \mathrm{~g} / 70.134 \mathrm{~g} / \mathrm{mol})\left(10 \mathrm{~mol} \mathrm{CO}_{2} / 2 \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{10}\right)\left(44.009 \mathrm{~g} \mathrm{CO}_{2} / \mathrm{mol} \mathrm{CO}_{2}\right)=116.1 \mathrm{~g}$ maximum yield
c) How many grams of water are formed?
$(37.00 \mathrm{~g} / 70.134 \mathrm{~g} / \mathrm{mol})\left(10 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} / 2 \mathrm{~mol}_{5} \mathrm{H}_{10}\right)\left(18.014 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} / \mathrm{mol} \mathrm{H} \mathrm{O}\right)=47.52 \mathrm{~g}$ maximum yield
d) In another reaction 1.25 L of O_{2} were consumed, how many liters of CO_{2} were produced? T, P same before and after the reaction. (Gay-Lussac 's Law of Combining Volumes)
$\left(1.25 \mathrm{~L} \mathrm{O}_{2}\right)\left(10 \mathrm{LCO}_{2} / 15 \mathrm{~L} \mathrm{O}_{2}\right)=0.833 \mathrm{LCO}_{2}$

Solving Stoichiometry Problems

EX 13. A mixture containing 20.0 g of methane $\left(\mathrm{CH}_{4}\right)$ and 100 g of oxygen is ignited and burned. What substances will be found in the mixture after the reaction stops?

$$
\begin{gathered}
1 \mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
{\left[\mathrm{C}=12.011, \mathrm{H}=1.0079=>M_{\mathrm{CH}}=12.011+4(1.0079)=16.0426\right.} \\
\left.\mathrm{O}=15.999 \Rightarrow M_{\mathrm{O}_{2}}=2(15.999)=31.998 ; M_{\mathrm{CO}_{2}}=12.011+2(15.999)=44.009\right]
\end{gathered}
$$

$\mathrm{CH}_{4}:(20.0 \mathrm{~g} / 16.0426 \mathrm{~g} / \mathrm{mol})\left(2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} / 1 \mathrm{~mol} \mathrm{CH}_{4}\right)$	$=\begin{array}{c}2.493 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \\ \mathrm{O}_{2}:(100 . \mathrm{g} / 31.1998 \mathrm{~g} / \mathrm{mol})(2 \mathrm{~mol} \mathrm{H} \\ 2\end{array}$
$\left.\mathrm{O} / 2 \mathrm{~mol} \mathrm{O}_{2}\right)$	$=\begin{array}{c}\text { limiting } \\ \text { could have used CO}\end{array}$

mixture after reaction contains $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$, and unreacted O_{2}

Solving Stoichiometry Problems

Laboratory units

Chemical units

Use stoichiometric coefficients of A and B

Solving Stoichiometry Problems

EX 14. When hydrogen sulfide gas is bubbled into a solution of sodium hydroxide, sodium sulfide and water are produced. How many grams of sodium sulfide are formed if 2.50 g of hydrogen sulfide is bubbled into a solution containing 1.85 g of sodium hydroxide?

$$
\begin{gathered}
{\left[M_{\mathrm{NaOH}}=39.996, M_{\mathrm{H}_{2} \mathrm{~S}}=34.080, M_{\mathrm{Na} 2 \mathrm{~S}=78.04]}\right.} \\
1 \mathrm{H}_{2} \mathrm{~S}(g)+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow 1 \mathrm{Na}_{2} \mathrm{~S}(a q)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{gathered}
$$

Which limits reaction? g reactant -> mol reactant -> mol any product $\left(\mathrm{Na}_{2} \mathrm{~S}\right)$
$\mathrm{H}_{2} \mathrm{~S}:(2.50 \mathrm{~g} / 34.081 \mathrm{~g} / \mathrm{mol})\left(1 \mathrm{~mol} \mathrm{Na} 2_{2} / 1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}\right)=0.0733 \mathrm{~mol} \mathrm{Na} 2 \mathrm{~S}$
NaOH: $(1.85 \mathrm{~g} / 39.997 \mathrm{~g} / \mathrm{mol})\left(1 \mathrm{~mol} \mathrm{Na} \mathrm{S}^{2} / 2 \mathrm{~mol} \mathrm{NaOH}\right)=0.0231 \mathrm{~mol}$ (0.02312) $(78.04 \mathrm{~g} / \mathrm{mol})=1.80 \mathbf{g ~ N a}_{2} \mathrm{~S}$

